Context-Free Grammars

A Motivating Question

	python3	
>>>		

>>> (137 + 42) - 2 * 3

```
>>> (137 + 42) - 2 * 3
```

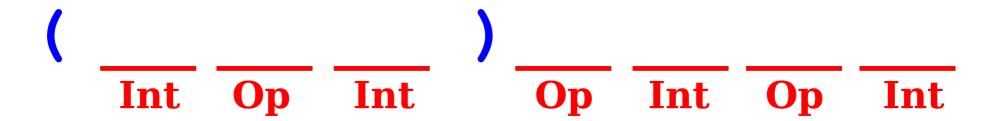
173

>>>

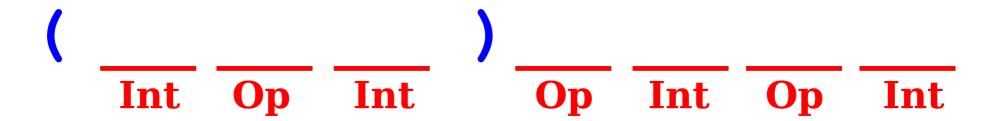
137

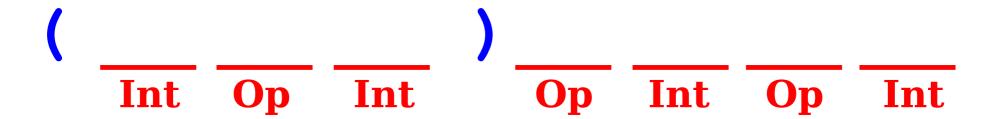
>>>

>>>



$$(\frac{26}{Int}, \frac{+}{Op}, \frac{42}{Int})$$
 * $\frac{2}{Op}, \frac{+}{Int}, \frac{1}{Op}$ Int





This only lets us make arithmetic expressions of the form (Int Op Int) Op Int Op Int.

What about arithmetic expressions that don't follow this pattern?

Expr

Expr

What can an arithmetic expression be?

What can an arithmetic expression be?

int A single number.

Expr

What can an arithmetic expression be?

int A single number.

Expr

What can an arithmetic expression be?

int A single number.

Expr Op Expr

What can an arithmetic expression be?

int A single number.

What can an arithmetic expression be?

int A single number.

What can an arithmetic expression be?

What can an arithmetic expression be?

int A single number.

What can an arithmetic expression be?

Expr

What can an arithmetic expression be?

int A single number.

Expr

What can an arithmetic expression be?

A single number. int **Expr Op Expr** (Expr)

Two expressions joined by an operator.

A parenthesized expression.

What can an arithmetic expression be?

int A single number.

Expr Op Expr Two expressions joined by an operator.

(Expr) A parenthesized expression.

Expr

What can an arithmetic expression be?

A single number. int **Expr Op Expr** Two expressions joined by an operator. (Expr)

A parenthesized expression.


```
What can an arithmetic expression be?
int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.
```



```
What can an arithmetic expression be?
```

int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.

What can an arithmetic expression be?

int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

What can an arithmetic expression be?

int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

What can an arithmetic expression be?

```
What can an arithmetic expression be?
```

```
What can an arithmetic expression be?
```

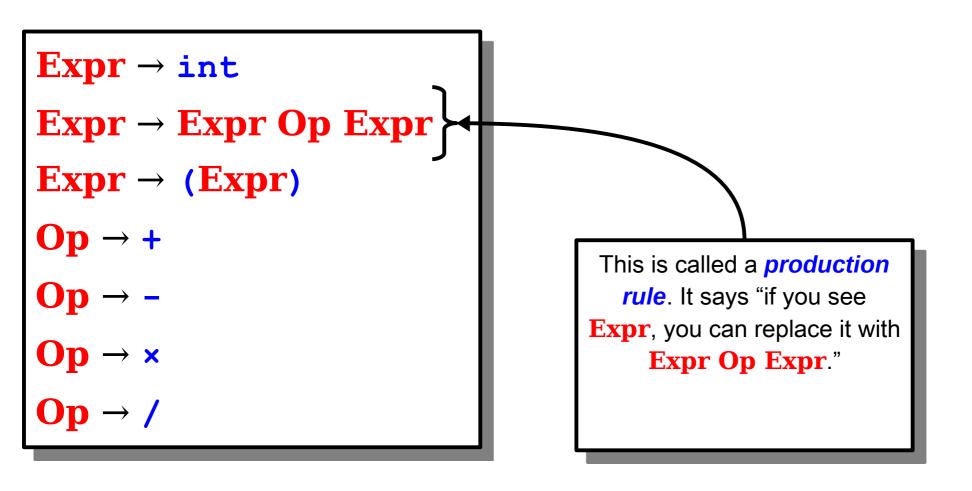
What can an arithmetic expression be?

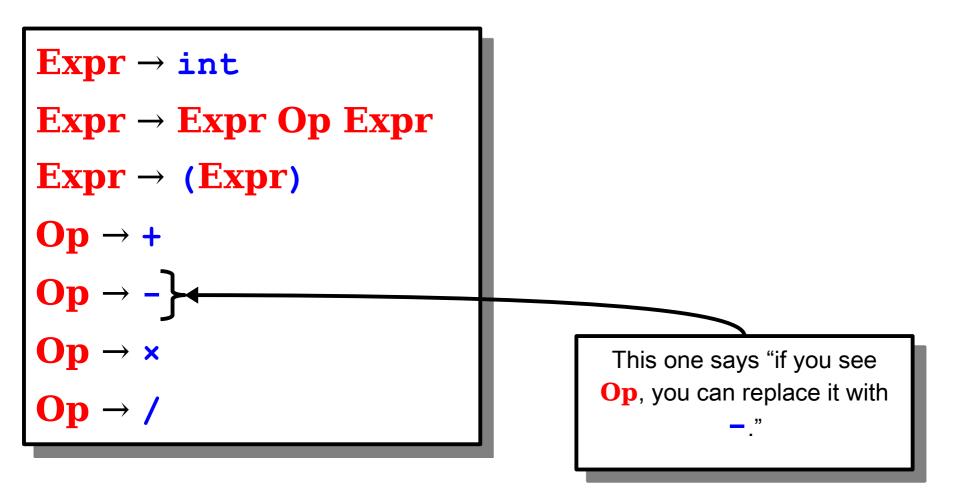
What can an arithmetic expression be?

What can an arithmetic expression be?

A *context-free grammar* (or *CFG*) is a recursive set of rules that define a language.

(There's a bunch of specific requirements about what those rules can be; more on that in a bit.)





```
Expr → int
Expr → Expr Op Expr
Expr \rightarrow (Expr)
\mathbf{Op} \rightarrow \mathbf{+}
```

```
Expr Op Expr

⇒ Expr Op int

⇒ int Op int

⇒ int / int
```

 Here's how we might express the recursive rules from earlier as a CFG.

```
Expr → int
Expr → Expr Op Expr
Expr \rightarrow (Expr)
```

```
Expr Op Expr

⇒ Expr Op int

⇒ int Op int

⇒ int / int

These red symbols are called
```

These red symbols are called **nonterminals**. They're placeholders that get expanded later on.

 Here's how we might express the recursive rules from earlier as a CFG.

```
Expr → int
Expr → Expr Op Expr
Expr \rightarrow (Expr)
```

```
Expr

⇒ Expr Op Expr

⇒ Expr Op int

⇒ int Op int

⇒ int / int
```

The symbols in blue monospace are **terminals**. They're the final characters used in the string and never get replaced.

```
Expr → int
Expr → Expr Op Expr
Expr \rightarrow (Expr)
\mathbf{Op} \rightarrow \mathbf{+}
```

```
Expr
\Rightarrow Expr Op Expr
\Rightarrow Expr Op (Expr)
⇒ Expr Op (Expr Op Expr)
\Rightarrow Expr \times (Expr Op Expr)
⇒ int × (Expr Op Expr)
⇒ int × (int Op Expr)
⇒ int × (int Op int)
\Rightarrow int \times (int + int)
```

Context-Free Grammars

- Formally, a context-free grammar is a collection of four items:
 - a set of nonterminal symbols (also called variables),
 - a set of terminal symbols (the alphabet of the CFG),
 - a set of *production rules* saying how each nonterminal can be replaced by a string of terminals and nonterminals, and
 - a *start symbol* (which must be a nonterminal) that begins the derivation. By convention, the start symbol is the one on the left-hand side of the first production.

```
Expr \rightarrow int

Expr \rightarrow Expr Op Expr

Expr \rightarrow (Expr)

Op \rightarrow +

Op \rightarrow -

Op \rightarrow ×

Op \rightarrow /
```

Some CFG Notation

- In today's slides, capital letters in **Bold Red Uppercase** will represent nonterminals.
 - e.g. **A**, **B**, **C**, **D**
- Lowercase letters in **blue monospace** will represent terminals.
 - e.g. t, u, v, w
- Lowercase Greek letters in *gray italics* will represent arbitrary strings of terminals and nonterminals.
 - e.g. α, γ, ω
- You don't need to use these conventions on your own; just make sure whatever you do is readable.

A Notational Shorthand

```
Expr \rightarrow int

Expr \rightarrow Expr Op Expr

Expr \rightarrow (Expr)

Op \rightarrow +

Op \rightarrow -

Op \rightarrow ×

Op \rightarrow /
```

A Notational Shorthand

```
Expr \rightarrow int | Expr Op Expr | (Expr)
Op \rightarrow + | - | \times | /
```

Derivations

```
Expr
\Rightarrow Expr Op Expr
\Rightarrow Expr Op (Expr)
⇒ Expr Op (Expr Op Expr)
\Rightarrow Expr \times (Expr Op Expr)
\Rightarrow int \times (Expr Op Expr)
⇒ int × (int Op Expr)
⇒ int × (int Op int)
\Rightarrow int \times (int + int)
```

- A sequence of zero or more steps where nonterminals are replaced by the right-hand side of a production is called a *derivation*.
- If string α derives string ω , we write $\alpha \Rightarrow^* \omega$.
- In the example on the left, we see that

```
\mathbf{Expr} \Rightarrow^* \mathbf{int} \times (\mathbf{int} + \mathbf{int}).
```

```
Expr \rightarrow int | Expr Op Expr | (Expr)
Op \rightarrow + | - | \times | /
```

The Language of a Grammar

• If G is a CFG with alphabet Σ and start symbol S, then the *language of G* is the set

$$\mathcal{L}(G) = \{ \boldsymbol{\omega} \in \Sigma^* \mid \mathbf{S} \Rightarrow^* \boldsymbol{\omega} \}$$

• That is, $\mathcal{L}(G)$ is the set of strings of terminals derivable from the start symbol.

If G is a CFG with alphabet Σ and start symbol S, then the *language of* G is the set

$$\mathcal{L}(G) = \{ \boldsymbol{\omega} \in \Sigma^* \mid \mathbf{S} \Rightarrow^* \boldsymbol{\omega} \}$$

Consider the following CFG G over $\Sigma = \{a, b, c, d\}$:

$$S \rightarrow Sa \mid dT$$
 $T \rightarrow bTb \mid c$

Which of the following strings are in $\mathcal{L}(G)$?

dca dc cad bcb dTaa

Answer at pollev.com/zhenglian740

Context-Free Languages

- A language L is called a **context-free language** (or CFL) if there is a CFG G such that $L = \mathcal{L}(G)$.
- Questions:
 - How are context-free and regular languages related?
 - How do we design context-free grammars for context-free languages?

Context-Free Languages

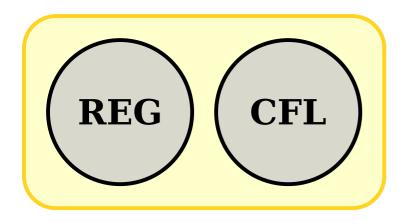
A language L is called a *context-free* language (or CFL) if there is a CFG G such that $L = \mathcal{L}(G)$.

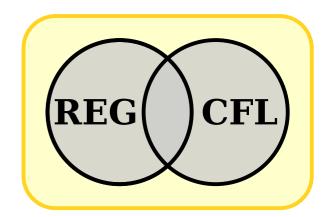
Questions:

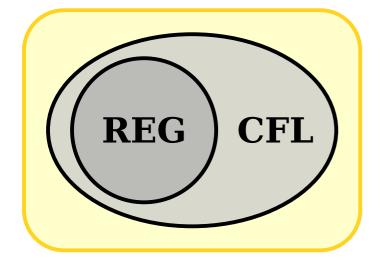
 How are context-free and regular languages related?

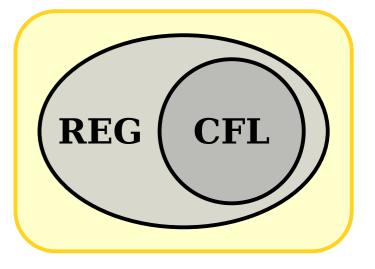
How do we design context-free grammars for context-free languages?

Five Possibilities









- CFGs consist purely of production rules of the form $A \rightarrow \omega$. They do not have the regular expression operators * or U.
- You can use the symbols * and ∪ if you'd like in a CFG, but they just stand for themselves.
- Consider this CFG G:

$$S \rightarrow a*b$$

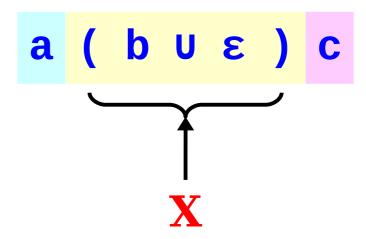
• Here, $\mathcal{L}(G) = \{\mathbf{a}^*\mathbf{b}\}\$ and has cardinality one. That is, $\mathcal{L}(G) \neq \{\mathbf{a}^n\mathbf{b} \mid n \in \mathbb{N}\}.$

- *Theorem:* Every regular language is context-free.
- **Proof idea:** Show how to convert an arbitrary regular expression into a context-free grammar.

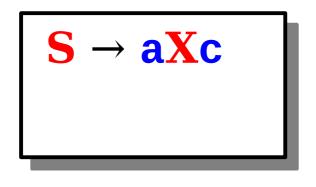
 $a (b U \epsilon) c$

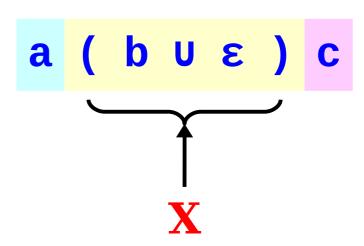
- *Theorem:* Every regular language is context-free.
- **Proof idea:** Show how to convert an arbitrary regular expression into a context-free grammar.

- *Theorem:* Every regular language is context-free.
- **Proof idea:** Show how to convert an arbitrary regular expression into a context-free grammar.

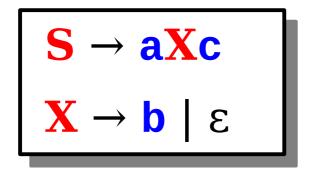


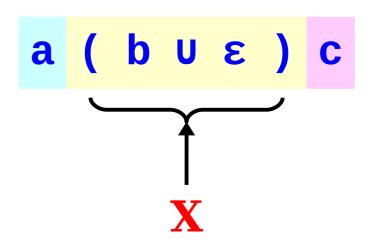
- *Theorem:* Every regular language is context-free.
- **Proof idea:** Show how to convert an arbitrary regular expression into a context-free grammar.



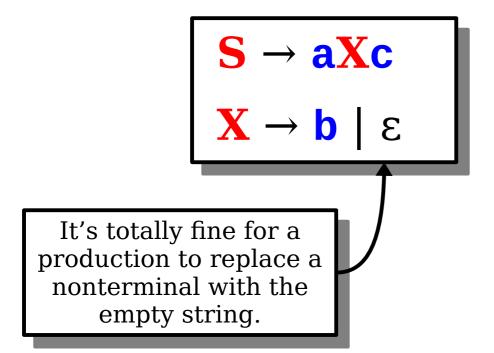


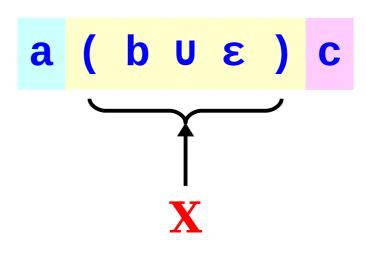
- *Theorem:* Every regular language is context-free.
- **Proof idea:** Show how to convert an arbitrary regular expression into a context-free grammar.





- *Theorem:* Every regular language is context-free.
- **Proof idea:** Show how to convert an arbitrary regular expression into a context-free grammar.





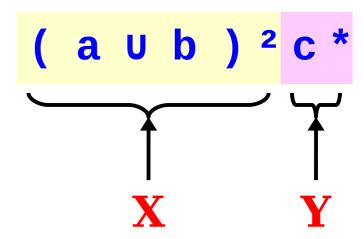
- *Theorem:* Every regular language is context-free.
- **Proof idea:** Show how to convert an arbitrary regular expression into a context-free grammar.

 $(a \cup b)^2 c^*$

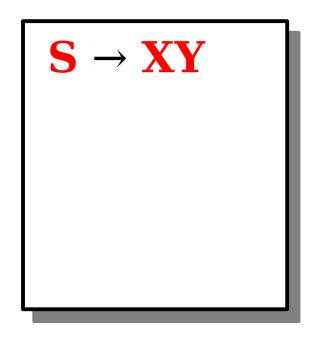
- *Theorem:* Every regular language is context-free.
- **Proof idea:** Show how to convert an arbitrary regular expression into a context-free grammar.

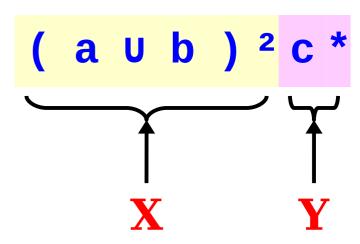
(a u b) ² c *

- *Theorem:* Every regular language is context-free.
- **Proof idea:** Show how to convert an arbitrary regular expression into a context-free grammar.

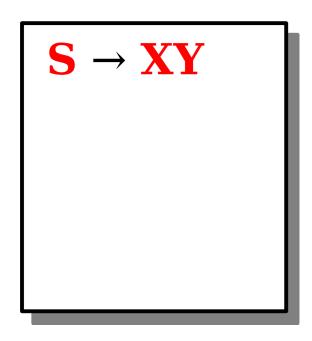


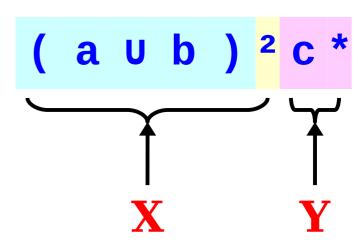
- *Theorem:* Every regular language is context-free.
- **Proof idea:** Show how to convert an arbitrary regular expression into a context-free grammar.



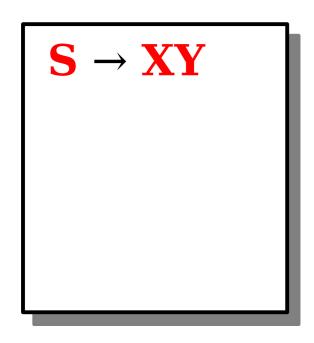


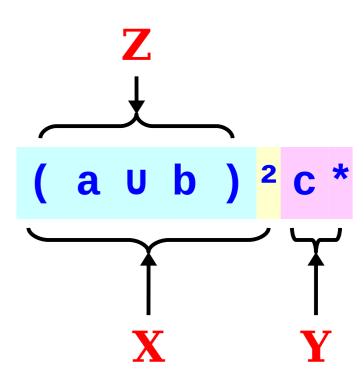
- *Theorem:* Every regular language is context-free.
- **Proof idea:** Show how to convert an arbitrary regular expression into a context-free grammar.



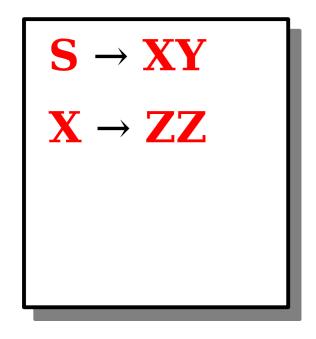


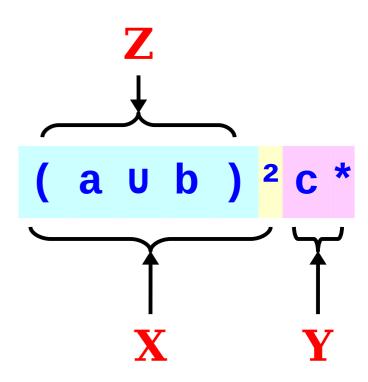
- *Theorem:* Every regular language is context-free.
- **Proof idea:** Show how to convert an arbitrary regular expression into a context-free grammar.



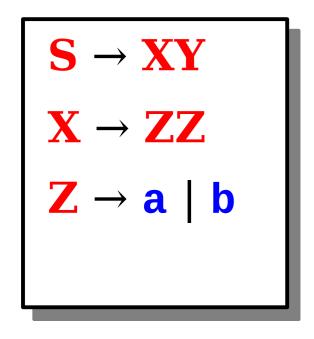


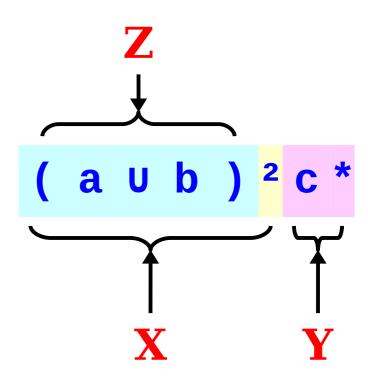
- *Theorem:* Every regular language is context-free.
- **Proof idea:** Show how to convert an arbitrary regular expression into a context-free grammar.



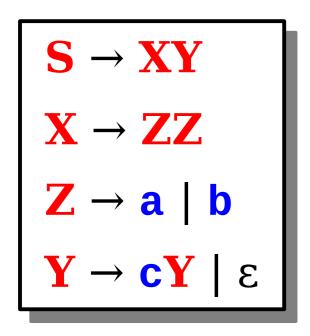


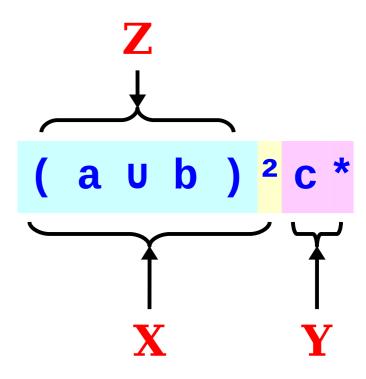
- *Theorem:* Every regular language is context-free.
- **Proof idea:** Show how to convert an arbitrary regular expression into a context-free grammar.



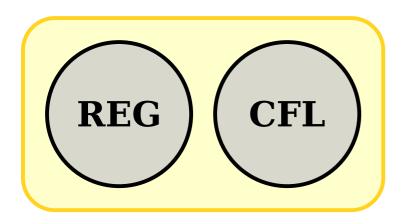


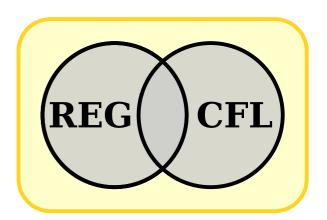
- *Theorem:* Every regular language is context-free.
- **Proof idea:** Show how to convert an arbitrary regular expression into a context-free grammar.

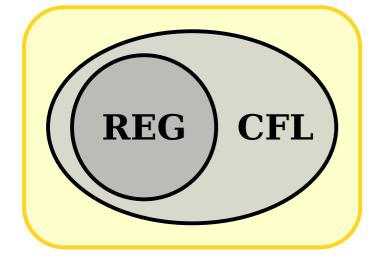


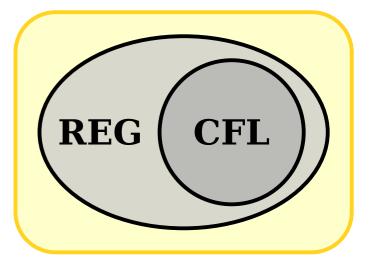


Two Five Possibilities

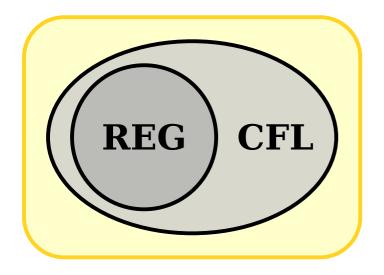








Two Five Possibilities



• Consider the following CFG *G*:

$$S \rightarrow aSb \mid \varepsilon$$

• Consider the following CFG *G*:

$$S \rightarrow aSb \mid \varepsilon$$

What strings can this generate?

S

• Consider the following CFG *G*:

$$S \rightarrow aSb \mid \varepsilon$$

What strings can this generate?

a S b

• Consider the following CFG *G*:

$$S \rightarrow aSb \mid \varepsilon$$

What strings can this generate?

a

S

b

• Consider the following CFG *G*:

$$S \rightarrow aSb \mid \varepsilon$$

What strings can this generate?

a a S b b

• Consider the following CFG *G*:

$$S \rightarrow aSb \mid \varepsilon$$

What strings can this generate?

a a b b

• Consider the following CFG *G*:

$$S \rightarrow aSb \mid \varepsilon$$

a a a	S b	b b
-------	-----	-----

• Consider the following CFG *G*:

$$S \rightarrow aSb \mid \varepsilon$$

What strings can this generate?

a a a b b

• Consider the following CFG *G*:

$$S \rightarrow aSb \mid \varepsilon$$

a	a	a	S	þ	b	đ	b
---	---	---	---	---	---	---	---

• Consider the following CFG *G*:

$$S \rightarrow aSb \mid \varepsilon$$

• Consider the following CFG *G*:

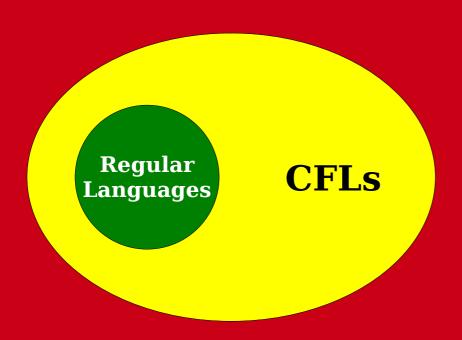
$$S \rightarrow aSb \mid \varepsilon$$

a a a b b l	0
-------------	---

• Consider the following CFG *G*:

$$S \rightarrow aSb \mid \varepsilon$$

a a a b b b
$$\mathcal{L}(G) = \{ a^n b^n \mid n \in \mathbb{N} \}$$



- Why do CFGs have more power than regular expressions?
- *Intuition:* Derivations of strings have unbounded "memory."

- Why do CFGs have more power than regular expressions?
- *Intuition:* Derivations of strings have unbounded "memory."

$$S \rightarrow aSb \mid \varepsilon$$

- Why do CFGs have more power than regular expressions?
- *Intuition:* Derivations of strings have unbounded "memory."

$$S \rightarrow aSb \mid \varepsilon$$

S

- Why do CFGs have more power than regular expressions?
- *Intuition:* Derivations of strings have unbounded "memory."

$$S \rightarrow aSb \mid \varepsilon$$

- Why do CFGs have more power than regular expressions?
- *Intuition:* Derivations of strings have unbounded "memory."

$$S \rightarrow aSb \mid \varepsilon$$

a

S

b

- Why do CFGs have more power than regular expressions?
- *Intuition:* Derivations of strings have unbounded "memory."

$$S \rightarrow aSb \mid \varepsilon$$

- Why do CFGs have more power than regular expressions?
- *Intuition:* Derivations of strings have unbounded "memory."

$$S \rightarrow aSb \mid \varepsilon$$

a a

S

b b

- Why do CFGs have more power than regular expressions?
- *Intuition:* Derivations of strings have unbounded "memory."

$$S \rightarrow aSb \mid \varepsilon$$

- Why do CFGs have more power than regular expressions?
- *Intuition:* Derivations of strings have unbounded "memory."

$$S \rightarrow aSb \mid \varepsilon$$

a a a

S

b b b

- Why do CFGs have more power than regular expressions?
- *Intuition:* Derivations of strings have unbounded "memory."

$$S \rightarrow aSb \mid \varepsilon$$

a a a a S b b b)
-----------------	---

- Why do CFGs have more power than regular expressions?
- *Intuition:* Derivations of strings have unbounded "memory."

$$S \rightarrow aSb \mid \varepsilon$$

a a a a

b b b b

- Why do CFGs have more power than regular expressions?
- *Intuition:* Derivations of strings have unbounded "memory."

$$S \rightarrow aSb \mid \varepsilon$$

a a a b b b

Time-Out for Announcements!

Problem Set Six

- Problem Set Five was due today at 5:30PM.
- Problem Set Six goes out today. It's due next Friday at 5:30PM.
 - It's all about regular expressions, properties of regular languages, and nonregular languages.

Preparing for the Final Exam

- We've released two practice final exams. We strongly recommend sitting down and taking the practice exam under realistic exam conditions.
- There is also a gigantic compendium of CS103 practice problems on the course website.
 - You can search for problems based on the topics they cover, whether solutions are available, whether they're ones we particularly like, and whether they have solutions.
 - Please do *not* read the solutions to a problem until you have worked through it.

Back to CS103!

- Like designing DFAs, NFAs, and regular expressions, designing CFGs is a craft.
- When thinking about CFGs:
 - *Think recursively:* Build up bigger structures from smaller ones.
 - *Have a construction plan:* Know in what order you will build up the string.
 - Store information in nonterminals: Have each nonterminal correspond to some useful piece of information.

- Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid w \text{ is a palindrome }\}$
- We can design a CFG for L by thinking inductively:
 - Base case: ε, a, and b are palindromes.
 - If ω is a palindrome, then $a\omega a$ and $b\omega b$ are palindromes.
 - No other strings are palindromes.

$$S \rightarrow \epsilon \mid a \mid b \mid aSa \mid bSb$$

- Let $\Sigma = \{\{,\}\}$ and let $L = \{w \in \Sigma^* \mid w \text{ is a string of balanced braces}\}$
- Some sample strings in *L*:

```
{{{}}}}
{{{}}}}
{{{{}}}}}
{{{{}}}}
```

- Let $\Sigma = \{\{,\}\}$ and let $L = \{w \in \Sigma^* \mid w \text{ is a string of balanced braces }\}$
- Let's think about this recursively.
 - Base case: the empty string is a string of balanced braces.
 - Recursive step: Look at the closing brace that matches the first open brace.

- Let $\Sigma = \{\{,\}\}$ and let $L = \{w \in \Sigma^* \mid w \text{ is a string of balanced braces }\}$
- Let's think about this recursively.
 - Base case: the empty string is a string of balanced braces.
 - Recursive step: Look at the closing brace that matches the first open brace.

- Let $\Sigma = \{\{,\}\}$ and let $L = \{w \in \Sigma^* \mid w \text{ is a string of balanced braces }\}$
- Let's think about this recursively.
 - Base case: the empty string is a string of balanced braces.
 - Recursive step: Look at the closing brace that matches the first open brace.

- Let $\Sigma = \{\{,\}\}$ and let $L = \{w \in \Sigma^* \mid w \text{ is a string of balanced braces}\}$
- Let's think about this recursively.
 - Base case: the empty string is a string of balanced braces.
 - Recursive step: Look at the closing brace that matches the first open brace.

- Let $\Sigma = \{\{,\}\}$ and let $L = \{w \in \Sigma^* \mid w \text{ is a string of balanced braces }\}$
- Let's think about this recursively.
 - Base case: the empty string is a string of balanced braces.
 - Recursive step: Look at the closing brace that matches the first open brace. Removing the first brace and the matching brace forms two new strings of balanced braces.

$$S \to \{S\}S \mid \varepsilon$$

• Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid w \}$ has the same number of a's and b's $\}$

How many of the following CFGs have language *L*?

$$S \rightarrow aSb \mid bSa \mid \epsilon$$

$$S \rightarrow abS \mid baS \mid \epsilon$$

Answer at pollev.com/cs103

• Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid w \}$ has the same number of a's and b's $\}$

$$S \rightarrow aSb \mid bSa \mid \epsilon$$

$$S \rightarrow abS \mid baS \mid \epsilon$$

$$S \rightarrow abSba \mid baSab \mid \epsilon$$

$$S \rightarrow SbaS \mid SabS \mid \varepsilon$$

• Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid w \}$ has the same number of a's and b's $\}$

$$S \rightarrow aSb \mid bSa \mid \epsilon$$

$$S \rightarrow abS \mid baS \mid \epsilon$$

$$S \rightarrow abSba \mid baSab \mid \epsilon$$

$$S \rightarrow SbaS \mid SabS \mid \varepsilon$$

• Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid w \}$ has the same number of a's and b's $\}$

$$S \rightarrow aSb \mid bSa \mid \epsilon$$

$$S \rightarrow abS \mid baS \mid \epsilon$$

• Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid w \}$ has the same number of a's and b's $\}$

$$S \rightarrow aSb \mid bSa \mid \epsilon$$

$$S \rightarrow abS \mid baS \mid \epsilon$$

$$S \rightarrow abSba \mid baSab \mid \epsilon$$

Designing CFGs: A Caveat

- When designing a CFG for a language, make sure that it
 - generates all the strings in the language and
 - never generates a string outside the language.
- The first of these can be tricky make sure to test your grammars!
- You'll design your own CFG for this language on Problem Set 8.

CFG Caveats II

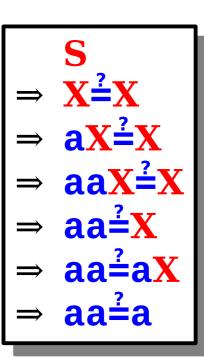
• Is the following grammar a CFG for the language $\{a^nb^n \mid n \in \mathbb{N}\}$?

 $S \rightarrow aSb$

- What strings in {a, b}* can you derive?
 - Answer: None!
- What is the language of the grammar?
 - Answer: **Ø**
- When designing CFGs, make sure your recursion actually terminates!

- When designing CFGs, remember that each nonterminal can be expanded out independently of the others.
- Let $\Sigma = \{\mathbf{a}, \stackrel{?}{=}\}$ and let $L = \{\mathbf{a}^n \stackrel{?}{=} \mathbf{a}^n \mid n \in \mathbb{N} \}$.
- Is the following a CFG for *L*?

$$S \rightarrow X^{2}X$$
 $X \rightarrow aX \mid \epsilon$



Finding a Build Order

- Let $\Sigma = \{\mathbf{a}, \stackrel{?}{=}\}$ and let $L = \{\mathbf{a}^n \stackrel{?}{=} \mathbf{a}^n \mid n \in \mathbb{N} \}$.
- To build a CFG for *L*, we need to be more clever with how we construct the string.
 - If we build the strings of a's independently of one another, then we can't enforce that they have the same length.
 - *Idea*: Build both strings of a's at the same time.

Here's one possible grammar based on that idea:

$$S \rightarrow \stackrel{?}{=} | aSa$$

S

⇒ aSa

⇒ aaSaa

⇒ aaaSaaa

⇒ aaa≐aaa

- **Key idea:** Different non-terminals should represent different states or different types of strings.
 - For example, different phases of the build, or different possible structures for the string.
 - Think like the same ideas from DFA/NFA design where states in your automata represent pieces of information.

- Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid |w| \equiv_3 0$ and all the characters in the first third of w are the same $\}$.
- Examples:

- Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid |w| \equiv_3 0$ and all the characters in the first third of w are the same $\}$.
- Examples:

```
\mathbf{\epsilon} \in L a \notin L
a \mathsf{bb} \in L b \notin L
b \mathsf{ab} \in L ab \mathsf{abab} \notin L
aa \mathsf{baba} \in L aab \mathsf{aaaaaaa} \notin L
bb \mathsf{bbb} \in L bbbb \notin L
```

• Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid |w| \equiv_3 0$ and all the characters in the first third of w are the same $\}$.

- Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid |w| \equiv_3 0$ and all the characters in the first third of w are the same $\}$.
- One approach:

aaa	bab	Observation 1:
abb	bbb	Strings in this
aaabab	bbabbb	language are either: the first third is a s or
aababa	bbbaaaaaa	the first third is b s.
aaaaaaaa	bbbbbabaa	

- Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid |w| \equiv_3 0$ and all the characters in the first third of w are the same $\}$.
- One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaa bbbbbabaa

- Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid |w| \equiv_3 0$ and all the characters in the first third of w are the same $\}$.
- One approach:

aaa	bab
abb	bbb
aaabab	bbabbb
aababa	bbbaaaaaa
aaaaaaaa	bbbbbabaa

Observation 2:

Amongst these strings, for every a I have in the first third, I need two other characters in the last two thirds.

• Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid |w| \equiv_3 0$ and all the characters in the first third of w are the same $\}$.

aaaaaa

bbabaa

• One approach:

aaa bab

abb bbb

aaabab bbabbb

This pattern of "for every x I see here, I need a y somewhere else in the string" is very common in CFGs!

Observation 2:

Amongst these strings, for every a I have in the first third, I need two other characters in the last two thirds.

- Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid |w| \equiv_3 0$ and all the characters in the first third of w are the same $\}$.
- One approach:

aaa	bab	Observation 2:
abb	bbb	Amongst these strings, for every a I
aaabab	bbabbb	have in the first third,
aababa	bbbaaaaaa	I need two other characters in the last
aaaaaaaa	bbbbbabaa	two thirds.
$A \rightarrow aAXX$	$\mathbf{X} \rightarrow \mathbf{a}$	b

- Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid |w| \equiv_3 0$ and all the characters in the first third of w are the same $\}$.
- One approach:

```
aaa
abb
aaabab
aababa
aaaaaaaaa
```

bab

Here the nonterminal A represents "a string where the first third is a 's" and the nonterminal X represents "any character"

ppppbabaa

$$A \rightarrow aAXX \mid \epsilon \quad X \rightarrow a \mid b$$

- Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid |w| \equiv_3 0$ and all the characters in the first third of w are the same $\}$.
- One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaa bbbbbabaa

 $A \rightarrow aAXX \mid \epsilon \quad X \rightarrow a \mid b$

- Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid |w| \equiv_3 0$ and all the characters in the first third of w are the same $\}$.
- One approach:

aaa b	ab
-------	----

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

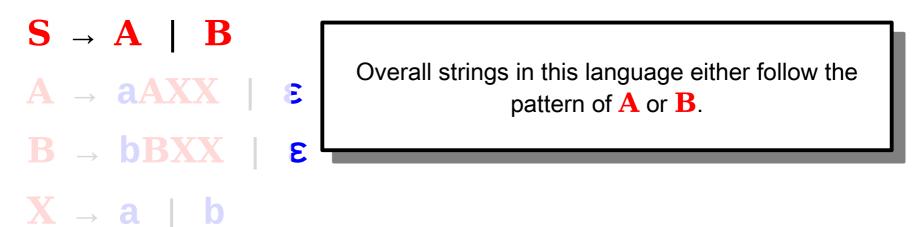
aaaaaaaa bbbbbabaa

$$\mathbf{B} \rightarrow \mathbf{b}\mathbf{B}\mathbf{X}\mathbf{X} \mid \mathbf{\epsilon} \quad \mathbf{X} \rightarrow \mathbf{a} \mid \mathbf{b}$$

- Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid |w| \equiv_3 0$ and all the characters in the first third of w are the same $\}$.
- Tying everything together:

```
S \rightarrow A \mid B
A \rightarrow aAXX \mid \epsilon
B \rightarrow bBXX \mid \epsilon
X \rightarrow a \mid b
```

- Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid |w| \equiv_3 0$ and all the characters in the first third of w are the same $\}$.
- Tying everything together:



- Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid |w| \equiv_3 0$ and all the characters in the first third of w are the same $\}$.
- Tying everything together:

```
S \rightarrow A \mid B
A \rightarrow aAXX \mid \epsilon
B \rightarrow bBXX \mid \epsilon
X \rightarrow a \mid b
A represents "strings where the first third is a's"
```

- Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid |w| \equiv_3 0$ and all the characters in the first third of w are the same $\}$.
- Tying everything together:

```
S \rightarrow A \mid B
A \rightarrow aAXX \mid \epsilon
B \rightarrow bBXX \mid \epsilon
X \rightarrow a \mid b

B represents "strings where the first third is b's"
```

- Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid |w| \equiv_3 0$ and all the characters in the first third of w are the same $\}$.
- Tying everything together:

Function Prototypes

```
Let Σ = {void, int, double, name, (, ), ,, ;}.
Let's write a CFG for C-style function prototypes!
Examples:
```

void name(int name, double name);
int name();
int name(double name);
int name(int, int name, int);
void name(void);

Function Prototypes

- Here's one possible grammar:
 - S → Ret name (Args);
 - Ret → Type | void
 - Type → int | double
 - Args → ε | void | ArgList
 - ArgList → OneArg | ArgList, OneArg
 - OneArg → Type | Type name
- Fun question to think about: what changes would you need to make to support pointer types?

Summary of CFG Design Tips

- Look for recursive structures where they exist: they can help guide you toward a solution.
- Keep the build order in mind often, you'll build two totally different parts of the string concurrently.
 - Usually, those parts are built in opposite directions: one's built left-to-right, the other right-to-left.
- Use different nonterminals to represent different structures.

CFGs for Programming Languages

```
BLOCK \rightarrow STMT
            { STMTS }
STMTS \rightarrow \epsilon
           STMT STMTS
         \rightarrow EXPR;
STMT
           if (EXPR) BLOCK
           while (EXPR) BLOCK
            do BLOCK while (EXPR);
            BLOCK
EXPR
         → identifier
            constant
            EXPR + EXPR
            EXPR - EXPR
            EXPR * EXPR
```

Grammars in Compilers

- One of the key steps in a compiler is figuring out what a program "means."
- This is usually done by defining a grammar showing the high-level structure of a programming language.
- There are certain classes of grammars (LL(1) grammars, LR(1) grammars, LALR(1) grammars, etc.) for which it's easy to figure out how a particular string was derived.
- Tools like yacc or bison automatically generate parsers from these grammars.
- Curious to learn more? *Take CS143!*

Natural Language Processing

- By building context-free grammars for actual languages and applying statistical inference, it's possible for a computer to recover the likely meaning of a sentence.
 - In fact, CFGs were first called *phrase-structure grammars* and were introduced by Noam Chomsky in his seminal work *Syntactic Structures*.
 - They were then adapted for use in the context of programming languages, where they were called *Backus-Naur forms*.
- The **Stanford Parser** project is one place to look for an example of this.
- Want to learn more? Take CS124 or CS224N!

Next Time

- Turing Machines
 - What does a computer with unbounded memory look like?
 - How would you program it?
 - What can you do with it?